Jump to content

Feature Engineering A-Z™ | Beginner To Advanced


Srbija

Recommended Posts

yjvtbbuhs8dn7mtqtiwtpagjmc.jpg

Feature Engineering A-Z™ | Beginner To Advanced
Genre: eLearning | MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 8.62 GB | Duration: 15h 45m

Data Engineering | Data Imbalance |Transformation | Feature Encoding | EDA | Scaling | Normalisation | Data Leakage



What you'll learn
Master How To Deal With Messy Data(outliers, missing values, data imbalance, data leakage etc.)
Know How To Deal With Complex Data Cleaning Issues In Python
Learn Automated Modern Tools And Libraries For Professional Data Cleaning And Analysis
Get The Skill Needed To Be Part Of The Top 10% Data Science
Learn How To Professionally Prepare Your Data For Machine Learning Algorithms
Master Different Techniques Of Dealing With Raw Data
Perform Industry Level Data Engineering
Learn Feature Engineering
Learn Feature Encoding
Learn Data Engineering


Description
Building Machine Learning models is important but what is more important is how well you prepare your data to build these models

According to Forbes: "60% of the Data Scientist's or Data Analyst's time is spent in cleaning and organising the data..."

In this course, you will not just get to know the industry level strategies but also I will practically demonstrate them for better understanding.

This course has been practically and carefully designed by industry experts to reflect the real-world scenario of working with messy data.

This course will help you learn complex Data Analytic techniques and concepts for easier understanding and data manipulations.

We will walk you through step-by-step on each topic explaining each line of code for your understanding.

This course has been structured in the following form

How To Properly Deal With Data Types in Python

How To Properly Deal With Date and Time In Python

How To Properly Deal With Missing Values

How To Properly Deal With Outliers

How To Properly Deal With Data Imbalance

How To Properly Deal With Data Leakage

How To Properly Deal With Categorical Values

Beginner To Advanced Data Visualisation

Different Feature Engineering Techniques including

Feature Encoding

Feature Scaling

Feature Transformation

Feature Normalisation

Automated Feature EDA Tools

pandas-profiling

Dora

Autoviz

Sweetviz

Automated Feature Engineering

RFECV

FeatureTools

FeatureSelector

Autofeat

This course aims to help beginners, as well as an intermediate data analyst, students, business analyst, data science, and machine learning enthusiasts, master the foundations of confidently working with data in the real world.

Who this course is for
Anyone ready to learn how to deal with complex machine learning problems such as imbalance data, data leakage, basic to advanced Feature Engineering etc. is str
Anyone who wants to learn professional data engineering
Any student interested in learning how to prepare data to build Machine Learning models
Interested in learning techniques to deal with messy data

Homepage

Hidden Content

    Give reaction to this post to see the hidden content.



10.handsonexerciseups7kk85.jpg

Hidden Content

    Give reaction to this post to see the hidden content.



Hidden Content

    Give reaction to this post to see the hidden content.


Link to comment

Please sign in to comment

You will be able to leave a comment after signing in



Sign In Now
×
×
  • Create New...